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MYC drives aggressive prostate cancer by
disrupting transcriptional pause release at
androgen receptor targets
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c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although
MYC is overexpressed in both early and metastatic disease and associated with poor survival,
its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that
MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional
program (the set of genes directly targeted by the AR protein) in luminal prostate cells
without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR
and high MYC transcriptional programs accelerate prostate cancer progression toward a
metastatic, castration-resistant disease. Data integration of single-cell transcriptomics
together with ChIP-seq uncover an increase in RNA polymerase Il (Pol II) promoter-proximal
pausing at AR-dependent genes following MYC overexpression without an accompanying
deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC over-
expression antagonizes the canonical AR transcriptional program and contributes to prostate
tumor initiation and progression by disrupting transcriptional pause release at AR-
regulated genes.

A full list of author affiliations appears at the end of the paper.
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rostate cancer is the most common non-cutaneous malig-

nancy and a leading cause of cancer-related lethality in

men!. The androgen receptor (AR), a ligand-activated
transcription factor, is central to the homeostasis of normal
prostate epithelium?3. Importantly, since the discovery that
prostate cancer is reliant on androgen signaling to thrive®>, tar-
geting AR activity continues to be the main pillar of prostate
cancer therapy®.

Prostate cancer initiation and progression involves the corruption
of the normal prostate cancer transcriptional network”. Loss of the
NKX3-1 homeobox gene is a frequent and early event in prostate
cancer etiology while the TMPRSS2-ERG gene fusion and FOXAI
mutations both identify major molecular subtypes of the disease®?.

Overexpression of c-Myc (MYC), a master transcription factor
and oncoprotein whose expression and function are tightly con-
trolled under normal circumstances, is frequently observed in
prostate cancer. Nuclear overexpression of MYC protein is an
early event observed in luminal cells of prostate intraepithelial
neoplasia (PIN) and is maintained in a large proportion of pri-
mary carcinomas and metastatic disease!?. Importantly, about
25% of familial risk of prostate cancer map to germline variation
at chromosome 8q24 with mechanistic evidence tying this region
to MYC regulation!!-13. Critically, MYC overexpression in nor-
mal luminal cells of murine prostate is sufficient to initiate
prostate cancer!4, providing evidence that deregulation of MYC
protein expression is a critical oncogenic event driving prostate
cancer initiation.

Although AR and MYC are both central to prostate cancer
etiology, our current understanding of the interplay between these
two transcription factors is scarce. A recent study revealed
that MYC overexpression antagonizes androgen-induced gene
expression in an androgen-sensitive cell line representative of
advanced prostate cancer!®. However, it remains unknown how
increased MYC expression shapes the AR transcriptional program
in normal luminal prostate cells as they transition to PIN and
subsequently progress from a localized to a metastatic disease.

Here we model MYC-driven prostate cancer initiation in vivo
and define the transcriptional rewiring occurring in luminal cells
at a single-cell level. We demonstrate that MYC overexpression
diminishes the canonical AR transcriptional program, alters the
AR cistrome, and results in the establishment of a corrupted AR
transcriptional program in a murine model. We determine that
an active MYC transcriptional program and low AR activity
identify prostate cancer patients predisposed to fail standard-of-
care therapies and most likely to develop metastatic castration
resistant prostate cancer (mCRPC). Accordingly, we find that
high MYC mRNA expression in castration-resistant tumors is
also associated with a weakened canonical AR transcriptional
program and a repurposing of the AR cistrome. Patients har-
boring a mCRPC characterized by an active MYC transcriptional
program and low AR activity are more likely to fail first-line next
generation AR signaling inhibitor (ARSI; i.e. abiraterone acetate
or enzalutamide) and die of their disease. Critically, integration of
transcriptomic and epigenomic data reveals that MYC over-
expression does not lead to the deactivation of AR-bound
enhancers but instead results in RNA polymerase II (Pol II)
promoter-proximal pausing at AR-dependent genes. Altogether,
our findings suggest that MYC overexpression contributes to
tumor initiation and progression by disrupting the AR tran-
scriptional program.

Results

MYC induces a profound transcriptional reprogramming in
murine prostate lobes. To examine the transcriptional repro-
gramming associated with MYC-driven prostate cancer initiation,

we compared a 12-week-old mouse that overexpresses an
ARR,Pb driven human ¢-MYC transgene (MYC) in the prostate
epithelium to a wild-type (WT) littermatel®. At 12 weeks of age,
MYC overexpression induces cellular epithelium transformation
to PIN, a premalignant condition that often precedes the devel-
opment of invasive adenocarcinoma in humans!, with varying
penetrance across prostate lobes. Notably, the murine anterior
prostate (AP) remained mostly unaffected by MYC over-
expression while PIN penetrance reached 83% and 97% in the
dorsolateral prostate (DLP) and ventral prostate (VP),
respectively!”. Transcriptional profiling of whole prostate lobes at
a single-cell level revealed a strong overlap with the matched bulk
gene expression profiling across lobes and genotypes (WT and
MYGC; Fig. 1a, b and Supplementary Fig. 1a). Comparison of gene
expression levels quantified by single-cell RNA-seq (scRNA-seq;
aggregate expression) or bulk RNA-seq revealed that scRNA-seq
quantitatively recapitulates bulk gene expression (Fig. lc and
Supplementary Fig. 1b). Accordingly, with the exception of the
AP, unsupervised clustering revealed a strong correlation between
single-cell transcriptome and the matched bulk transcriptome
(Fig. 1d) and revealed that MYC induces a profound transcrip-
tional reprogramming in both the DLP and VP lobes (Fig. le).

Single-cell transcriptome delineates inter- and intra-prostate
lobe heterogeneity. To determine key differences between murine
prostate lobes, we projected the single-cell transcriptome data into
the t-distributed stochastic neighbor embedding (tSNE) space.
Using known markers (Supplementary Fig. 2a, b), we identified
nine major subpopulations of cells across prostate lobes (Fig. 1f).
Notably, basal cells (Krt5T, Krt141) were the most abundant
epithelial cell subtype observed in the AP and DLP lobes, whereas
luminal cells (Krt8Hi, Krt18H1) were overwhelmingly represented
in the VP lobe. While murine Myc (mml0Myc) was expressed
across all subpopulations and prostate lobes (Supplementary
Figs. 2c and 3), human ¢-MYC transgene expression (hgl9MYC)
was largely restricted to the luminal subpopulation (Fig. 1g) and
more prevalent in the VP lobe (Fig. 1h), a feature in line with the
greater penetrance of the MYC-driven PIN transformation
observed in the VP lobe (Fig. 1i)!7.

The high representation of luminal cells coupled with a robust
and uniform MYC-driven PIN transition in the VP enabled us to
further define distinct luminal subpopulations. K-means cluster-
ing revealed a luminal subpopulation (Krt8Hi, Krt18Hi) common
to both WT and MYC genotypes and characterized by high
expression of Krt4 but negative for Nkx3-1 expression (Krt4ti,
Nkx3-1~; Fig. 2a, b and Supplementary Fig. 4a). Concurrent high
expression of Cd44, Tacstd2 (Trop2) and Psca suggests that this
subpopulation corresponds to luminal progenitor cells'®. In
untransformed VP, the main luminal cell cluster was composed
of two subpopulations characterized by either high or low
expression of androgen-responsive genes such as Pbsn and Msmb
(Supplementary Fig. 4b)!%20, Human MYC was predominately
expressed in luminal cells (Fig. 2¢, d), resulting in an extensive
transcriptional reprogramming within the luminal compartment
(Fig. 2a, b). Importantly, the distinct transcriptional profile of
human MYC overexpressing luminal cells was identifiable even
without inclusion of the human MYC transcript in the generation
of the tSNE plot (Supplementary Fig. 5). In agreement with MYC
function in controlling transcriptional programs that favor cell
growth and proliferation?!, we identified a subset of highly
proliferative human MYC overexpressing luminal cells positive
for cyclin B1, DNA topoisomerase II alpha and the marker of
proliferation Ki-67 (Ccnbl™, Top2a™, Mki67+; Fig. 2b and
Supplementary Fig. 4c), a state that was independent of human or
murine MYC transcript levels (Fig. 2d). Finally, a limited number
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of cells belonging to hematopoietic (PtprcT), vascular endothe-
lium (Pdgfra™), smooth muscle (Actg2™) and adipocyte (Fabp4™)
populations were also identified (Fig. 2b and Supplementary
Fig. 4d). Taken together, these results demonstrate that MYC-
driven transcriptional reprogramming can be readily captured
in vivo by single-cell transcriptomics to expose inter- and intra-
prostate lobe heterogeneity.
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MYC-driven luminal cells transformation dampens the AR
transcriptional program. To define the transcriptional repro-
gramming driven by MYC overexpression in the VP lobe across
cell subpopulations, we created a pseudobulk sample for each
subpopulation and performed Gene Sets Enrichment Analyses
(GSEA) using the Hallmark gene sets?2. As expected, the pseu-
dobulk RNA-seq analysis showed that the MYC-driven
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Fig. 1 MYC induces a profound transcriptional reprogramming in murine prostate lobes. a Graphical summary of the experimental design.

b, ¢ Transcriptional profiling of WT and MYC-transformed VP reveal high concordance for the total number of genes detected (b) and their expression
levels (c) between bulk and single-cell RNA-seq (VP; matched bulk and single-cell RNA-seq; n =1 per genotype). d, @ Sample-sample correlation (d) and
principal component analysis (e) between bulk and matched single-cell transcriptome identifies distinct transcriptional profiles across murine prostate

lobes (AP, DLP, VP; matched bulk and single-cell RNA-seq; n =1 per genotype). f Single-cell census of WT and MYC-transformed AP, DLP and VP. tSNE of
scRNA-seq profiles colored using known markers identified nine major subpopulations across prostate lobes (AP, DLP, VP; n=1 per genotype). g-i The
human MYC transgene (hg19MYC) expression is largely restricted to the luminal compartment (g AP, DLP, VP; n=1 per genotype) and predominantly
expressed in the VP (h Source data are provided as a Source Data file), in accordance with the penetrance of prostatic intraepithelial neoplasia (i PIN;
n = biologically independent animals; mean * SD; Source data are provided as a Source Data file'”). WT: wild-type; VP: ventral prostate; DLP: dorsolateral
prostate; AP: anterior prostate.

¥ @ Luminal 1
<
Vascular P @ Luminal 2
endothelium .
Smooth 7 @ Luminal MYC
muscle @ Luminal MYC
(high prolif.)
o wT Adipotyte @Basal
—
L ]
® MYC Hematopoietic R # ! @ Progenitor
e fp i . al
Lum’iﬁ@@iﬁc gt S @ Hematopoietic
(high proli.) Vascular
endothelium
@ Adipocyte
Smooth
muscle
c d 15 P =2.10e-65; FDR = 6.01e-61
. I I
@ Luminal 1
WT MYC ?>.) @ Luminal 2
Q
20 1.0 .
hg19MYC hg19MYC log2 > @ Luminal MYC
[Exp] O3 @ Luminal MYC
4 e (high prolif.)
£2 05
X
w
0| ——
0
P=0.7798; FDR = 1
mm10Myc d
Y I I R N
“ [Exp]
e & . 6 —
[
‘ S 10
Q0 1.
&S
ot =S
aE
[
0 E_E 0.5
x
w
0

Fig. 2 Single-cell transcriptome reveals distinct luminal cell subpopulations. a, b Single cell census of the WT and MY C-transformed VP (a) followed by
unsupervised clustering revealed four luminal subsets (b VP; n=1 per genotype). ¢, d Human MYC transcript (hgT9MYC) is only observed in MYC-
transformed VP and mostly restricted to the luminal subsets while murine Myc transcript (mm10Myc) is expressed across cellular populations and
genotypes (¢ VP; n=1 per genotype) and is not correlated with hg1T9MYC expression in luminal cells (d VP; n =1 per genotype; edgeR: two-sided quasi-
likelihood F-test).

transcriptional program enriched in gene sets related to cell pro-
liferation (E2F_targets, G2M_chekpoint) or MYC-transcriptional
activity per se (MYC_targets_V1/V2), was solely driven by the
luminal cells (Fig. 3a, b). In fact, the near totality of the MYC-
driven transcriptional program captured by bulk RNA-seq is in
line with the luminal cells transcriptional program. However, a
large proportion of MYC-driven transcriptional reprogramming
was undetected in bulk RNA-seq and only captured by single-cell
transcriptomics. Notably, basal cells underwent an extensive tran-
scriptional reprogramming (Fig. 3a). Considering that human

MYC transgene expression was detected in only a limited pro-
portion of basal cells (18.3%; Fig. 2c), this result suggests the
existence of a paracrine transcriptional reprogramming upon MYC
overexpression and prostate transformation. In addition, scRNA-
seq revealed the downregulation of several transcriptional pro-
grams in luminal cells. Critically, the depletion of the Andro-
gen_response gene set (Fig. 3a, c¢), which was not accompanied
with a global decreased in AR transcript and protein levels
(Fig. 3d-e; Supplementary Fig. 4e), suggests a dampening of the AR
transcriptional program driven by MYC overexpression as
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Fig. 3 MYC-driven luminal cells transformation dampens the AR transcriptional program. a Gene Set Enrichment Analysis (GSEA, Hallmark, P <0.05
and FDR < 0.1) revealed that the bulk RNA-seq transcriptional program associated with MYC overexpression is mostly driven by the luminal subset (VP;
matched bulk and single-cell RNA-seqg; n =1 per genotype; Source data are provided as a Source Data file). b, ¢ MYC overexpression is associated with an
enriched MYC transcriptional program (b P <0.001 and FDR < 0.007) and a depleted AR response (¢ P<0.016 and FDR < 0.040) in the luminal subset
(GSEA; VP; n=1 per genotype). d, e MYC overexpression does not alter AR transcript expression in the luminal compartment (d VP; n =1 per genotype;
edgeR: two-sided quasi-likelihood F-test) and protein levels in the VP (e VP; n=3 per genotype; numbers at the bottom represent AR levels relative to
B-Actin; Source data are provided as a Source Data file). f Schematic representation of covariance analysis to determine co-expression (i.e. positive

covariance) or mutually exclusive expression (i.e. negative covariance) between two genes at a single cell level. g Covariance analysis in the luminal subset

reveals a shift from canonical AR target genes in the transcripts co-expressed with Ar upon MYC overexpression (VP; n =1 per genotype). NES: normalized
enrichment score; ES: enrichment score.
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exemplified by loss of Pbsn and Msmb expression in the luminal
compartment (Supplementary Fig. 4b)1%:20,

Thus, we sought to leverage single-cell transcriptomics to
determine if MYC overexpression alters the nature of the transcripts
co-expressed with Ar through a covariance analysis (Fig. 3f)?3. As
expected, androgen-dependent genes such as Pbsn, Msmb, Sbp,
Defb50 and B2m or the prostate-specific 9530002B09Rik were co-
expressed with Ar in WT luminal cells (Fig. 3g)!920:24-28,
Interestingly, both Spinkl and Malatl, which are respectively
associated with castration-resistant or enzalutamide-resistant
disease?%30, were strongly co-expressed with Ar only in untrans-
formed tissues (Fig. 3g), suggesting that these genes are also part of
the normal androgen-dependent prostate epithelium homeostasis.
Surprisingly, upon MYC overexpression, canonical AR target genes
were no longer co-expressed with Ar. Instead, transcripts related to
ribosome biogenesis, a key pathway driving cell growth and
tumorigenesis and associated with MYC function3!, were co-
expressed with Ar (Fig. 3g). Altogether, these results indicate that
AR-transcriptional  program is compromised upon MYC
overexpression.

MYC overexpression alters the AR cistrome. To further char-
acterize the mechanism whereby MYC overexpression negatively
affects the AR-dependent transcriptional program, we utilized
chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq) to assess the AR cistrome. Although motif
analysis of AR binding sites revealed the canonical androgen
response element as the top enriched motif across genotypes
(Fig. 4a), unsupervised clustering uncovered a distinct AR cis-
trome driven by MYC overexpression (Fig. 4b). Indeed, MYC
overexpression resulted in a significant expansion of the AR
cistrome with 1695 sites gained compared to WT tissues (Fig. 4c).
Motif analyses revealed that AR gained sites are predominantly
associated with the forkhead family of transcription factors motifs
(forkhead response elements; FHRE), which includes the estab-
lished regulator of AR transcriptional activity FOXA1, followed
by androgen response elements (ARE; Fig. 4d)32. Critically,
FOXA1 occupancy was increased at AR gained binding sites in
MYC-transformed prostate tissues compared to the WT coun-
terpart (P=2.23e-62; Fig. 4e and Supplementary Fig. 6a).
Genomic regions gaining AR occupancy were characterized by
increased histone H3K27 acetylation (H3K27ac; P = 4.39e-40;
Fig. 4f), a mark of active regulatory regions and transcriptional
activity?3, supporting a differential usage of non-coding reg-
ulatory elements driven by AR in a MYC overexpressing context.
To determine whether the repurposing of the AR cistrome upon
MYC overexpression is associated with a distinct transcriptional
program, we next integrated AR ChIP-seq to single-cell tran-
scriptomics. Association of 1695 AR binding sites gained upon
MYC overexpression (Fig. 4¢c) to the expression of nearby coding
genes in the luminal cell subpopulations, ordered based on
slingshot pseudotime inference across genotypes (Supplementary
Fig. 6b), highlighted three main expression patterns, namely a
MYC-dependent increased, decreased or unchanged expression
(Fig. 4g). Using GSEA analysis and the Hallmark gene sets, we
identified the MYC_targets V1 as the top gene set enriched
within the set of genes with increased expression. Conversely, we
identified the Androgen_response among the gene sets that were
significantly enriched within the set of genes with decreased
expression (Fig. 4h). Taken together these results indicate, in the
context of MYC overexpression, a reprogramming of the AR
cistrome that drives an altered transcriptional program.

Divergent MYC and AR transcriptional programs dictate dis-
ease progression. Since our results in the preclinical model

uncovered a robust interplay between MYC and AR transcrip-
tional programs, we next investigated whether this MYC-driven
transcriptional reprogramming is clinically relevant. We used
gene expression data to stratify 488 primary prostate cancer
patients in the TCGA dataset based on the combined levels of the
Hallmark Androgen_response (high; low) and MYC_targets_V1
(high; low) transcriptional signatures®. Kaplan-Meier curves
revealed that patients bearing a primary tumor characterized by
divergent AR and MYC transcriptional programs experienced
distinct rates of clinical progression. Tumors characterized by a
low AR transcriptional signature with concurrent high MYC
transcriptional signature (AR_low/MYC_high) were associated
with the shortest time to biochemical recurrence (BCR) while
tumors characterized by a high AR transcriptional signature with
concurrent low MYC transcriptional signature (AR_high/
MYC_low) were associated with the longest time to BCR (Sup-
plementary Fig. 7a, b). Interestingly, concordant AR and MYC
transcriptional ~ programs  (AR_high/MYC_high; AR_low/
MYC_low) were associated with an intermediate time to BCR
(Supplementary Fig. 7a, b). Recently, transcriptomic data from
nearly 20,000 tumors revealed that patients bearing a localized
treatment-naive primary prostate cancer with low AR-activity
(AR-A; based on a signature of nine canonical AR transcriptional
targets) experience a shorter time to recurrence®*. Thus, we next
sought to determine if MYC transcriptional activity status in low
AR-A tumors could identify a more aggressive subtype of primary
prostate cancer using the TCGA dataset. Strikingly, Kaplan-Meier
curves revealed that it is the subset of low AR-A tumors with
concurrent high MYC transcriptional signature that is associated
with a faster time to BCR (AR_low/MYC_high vs. AR_low/
MYC_low, P=0.0001; Fig. 5a, b). Importantly, we validated this
finding in a previously published independent meta-analysis
cohort combining 855 patients with individual patient-level data
(Fig. 5c and Supplementary Fig. 7c)3°. Univariable analysis
revealed that tumors with AR_low/MYC_high transcriptional
signatures are associated with increased rates of BCR (Hazard
Ratio (HR) =1.37, 95% Confidence Interval (CI) 1.03-1.83;
P=10.030; Fig. 5d), but this did not remain significant after
adjusting for clinicopathologic risk factors in multivariable ana-
lysis (Fig. 5d and Supplementary Fig. 7d). Since low AR-A tumors
were predicted to be less sensitive to androgen-deprivation
therapy and more likely to develop metastatic disease after initial
local therapy34, we next asked whether a high MYC transcrip-
tional activity allows for the identification of a more aggressive
subtype of treatment-naive primary prostate cancer. Strikingly,
Kaplan-Meier curves revealed that patients with tumors harbor-
ing an AR_low/MYC_high signature were the most likely to
develop metastatic disease (Fig. 5e and Supplementary Fig. 7e).
Univariable analysis shows that AR_low/MYC_high tumors are
associated with an increased risk to develop metastatic disease
(HR=12.93, 95% CI 1.68-5.10; P<0.001; Fig. 5f and Supple-
mentary Fig. 7f). Critically, this finding remained significant in a
multivariable competing risks regression analysis adjusting for
age, prostate-specific antigen (PSA), Gleason score, surgical
margin status, extracapsular extension, seminal vesicles invasion
and lymph node involvement (HR=2.46, 95% CI 1.34-4.52;
P=10.004; Fig. 5f and Supplementary Fig. 7f). Altogether, our
results suggest that concurrent AR_low/MYC_high transcrip-
tional signatures identify a subgroup of patients that are predis-
posed to fail standard-of-care therapies and progress to develop
metastatic disease.

High MYC expression is associated with a dampened AR
transcriptional program and resistance to AR signaling inhi-
bitors in castration-resistant tumors. CRPC is characterized by
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MYC and AR amplification®1>3¢. Thus, we sought to assess the
impact of MYC expression on the AR transcriptional program
and cistrome. Gene expression profiling from 59 ART CRPC
tumors revealed that AR activity is negatively correlated with
MYC expression (Fig. 6a, b)37. As expected, GSEA analysis
revealed that MYC-high CRPC tumors are enriched for
MYC transcriptional signatures. Strikingly, the Hallmark
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Androgen_response was the only gene set significantly depleted
in MYC-high tumors (Fig. 6¢), supporting a role for MYC in
dampening the canonical AR transcriptional program in the
castration-resistant setting. We next evaluated whether this
phenotype was associated with a repurposing of the AR cistrome
using the LuCaP patient-derived xenografts (PDXs) series
obtained from ART mCRPC samples (described in3® and
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Fig. 4 MYC overexpression alters the AR cistrome. a AR ChIP-seq identifies an androgen response element (ARE) as the top AR binding motif in WT and
MY C-transformed VP (VP; n =2 pools of biological replicates (n = 8-13) per genotype). b Unsupervised pairwise correlation of the murine AR cistrome
from all specimens (VP; n =2 pools of biological replicates (n = 8-13) per genotype). ¢ MYC overexpression expands the AR cistrome as demonstrated by
the heatmaps indicating AR binding intensity across 4 kb intervals (VP; n=2 pools of biological replicates (n = 8-13) per genotype). d Motif analysis of
MY C-associated AR gained sites reveal forkhead response element (FHRE) and androgen response element (ARE; VP; n = 2 pools of biological replicates
(n=8-13) per genotype). e, f AR gained sites are characterized by increased FOXA1 binding (e) and H3K27ac mark (f) in MYC-transformed VP (VP; n=2
pools of biological replicates (n = 8-13) per genotype). g Integration of the 1695 AR bindings sites gained in MYC tumors with luminal single cell

transcriptome grouped by k-means clustering (n = 3 clusters). h GSEA analysis (Hallmark) revealed an enforced MYC transcriptional program (Cluster 1)
and a diminished androgen response (Cluster 2) associated to MYC-dependent AR gained binding sites (Source data are provided as a Source Data file).
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Fig. 5 Divergent MYC and AR transcriptional programs dictate disease progression. a, b Kaplan-Meier curves (a) and log-rank tests (b) reveal that
patients bearing a primary tumor characterized by low AR-activity (AR-A) and concurrent high MYC transcriptional signature (Hallmark) have a shorter
time to biochemical recurrence (BCR) within the discovery cohort (TCGA). ¢, d Kaplan-Meier curves (€), univariable and multivariable analysis (d Cox
proportional hazards model) confirms that tumors with concurrent low AR-A and high MYC transcriptional signatures develop BCR after radical

prostatectomy more rapidly than low AR-A tumors without an active MYC transcriptional program in the validation cohort (Spratt et al., 201735; n = 855;
HR £95% CI). e, f Kaplan-Meier curves (e), univariable and multivariable analyses (f Cox proportional hazards model) reveal that tumors with concurrent
low AR-A and high MYC transcriptional signatures are more likely to develop a metastatic disease (n = 855; HR + 95% Cl). PSA: prostate-specific antigen;
HR: hazard ratio; Cl: confidence interval; GS: Gleason score; ECE: extracapsular extension; SVI: seminal vesicles invasion; LNI: lymph node involvement.
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Supplementary Fig. 8a). We selected eight specimens, for which
the gene expression profiles were readily available, and stratified
them into either the MYC-high or the MYC-low group based on
transcript expression (Fig. 6d). Importantly, AR transcript level
was not different between the MYC-high and MYC-low groups
(Fig. 6d). Comparison of the AR cistrome between the two groups
uncovered an alteration of AR binding in MYC-high mCRPC
PDXs towards an expanded AR cistrome robustly associated with
the forkhead family of transcription factors motifs (Fig. 6e, f,
Supplementary Fig. 8b). Accordingly, greater FOXA1 occupancy
was observed at AR gained binding sites in MYC-high compared

Univariable analysis

Signatures (Hallmark) HR (95% Cl) P
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AR_high/MYC_low 0.74 (0.07-8.39) ——— WH——1 0.807

AR_high/MYC_high 3.58 (0.48-26.40) — 0.212

AR_low/MYC_high 9.58 (1.21-76.20) ————&—— 0.033
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to the MYC-low mCRPC PDXs (P=1.74e-144; Fig. 6g and
Supplementary Fig. 8c). These sites were also characterized by
increased H3K27ac mark (P = 3.54e-268; Fig. 6h), in agreement
with the MYC-driven murine prostate cancer model (Fig. 4).
Critically, differential AR chromatin occupancy between both
groups was associated with a dampened AR transcriptional pro-
gram in the MYC-high group (Fig. 6i). Considering that high
MYC expression dampens the AR transcriptional program, we
hypothesized that MYC transcriptional activity is central to the
response to next generation ARSI (i.e. abiraterone acetate or
enzalutamide) in mCRPC. We used gene expression data to
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Fig. 6 High MYC expression is associated with a dampened AR transcriptional program and resistance to AR signaling inhibitors in castration-
resistant tumors. a, b AR activity is inversely correlated with MYC expression in CRPC clinical samples (a Pearson correlation coefficient (p) and P value;
linear regression = 95% Cl; Source data are provided as a Source Data file) and significantly lower in MYC-high tumors (b Two-way ANNOVA followed by
a Tukey-Kramer test; median; box boundaries: 25th and 75th percentiles; whiskers: + lowest/smallest value no further than 1.5 interquartile range; n =59;
Source data are provided as a Source Data file). € Gene Set Enrichment Analysis (GSEA, Hallmark, P < 0.05 and FDR < 0.1) revealed an enriched MYC
transcriptional program (P < 0.001 and FDR < 0.001) and a depleted AR response (P<0.001 and FDR < 0.001) in MYC-high CRPC (Source data are
provided as a Source Data file). d, e MYC-high mCRPC LuCaP patient-derived xenografts (PDXs) have similar levels of AR (d Wilcoxon rank-sum test; n =8
biologically independent animals; median, whiskers £ min to max; Source data are provided as a Source Data file) but are associated with an expanded AR
cistrome as demonstrated by the increased binding intensity across 4 kb intervals at AR gained sites (e). f Motif analysis of MYC-associated AR gained
sites reveal ARE and FHRE. g, h AR gained sites are characterized by increased FOXAT1 binding (g) and H3K27ac mark (h) in MYC-high mCRPC LuCaP. i AR
cistrome in MYC-high mCRPC LuCaP PDXs is associated with a diminished androgen response (GSEA; P<0.001 and FDR < 0.001). j, k Kaplan-Meier
curves (j) and univariable analysis (k Cox proportional hazards model) revealed that patients with mCRPC tumors harboring an AR_low/MYC_high
signature are more likely to resist ARSI treatment and die of their disease (n = 75; HR £ 95% Cl). HR: hazard ratio; Cl: confidence interval; NES: normalized

enrichment score; ES: enrichment score.

stratify 75 mCRPC in the SU2C International Dream Team
dataset based on the combined levels of the Hallmark Andro-
gen_response (high; low) and MYC_targets V1 (high; low)
transcriptional signatures3®. Strikingly, Kaplan-Meier curves and
univariable analysis revealed that patients with mCRPC tumors
harboring an AR_low/MYC_high signature were more likely to
resist ARSI treatment and die of their disease (HR = 9.58, 95% CI
1.21-76.20; P=0.033 Fig. 6j, k). Taken together, these results
support the existence of a distinct AR cistrome in MYC over-
expressing CRPC associated with a diminished AR transcriptional
program and suggest that concurrent AR_low/MYC_high tran-
scriptional signatures identify a subgroup of patients that are
predisposed to fail first-line next generation ARSI treatment and
die of mCRPC.

MYC overexpression disrupts the AR transcriptional program
by pausing AR regulated genes. To assess for direct effects of AR
in mediating this transcriptional reprogramming we leveraged the
preclinical model of MYC-driven prostate cancer and performed
binding and expression target analysis (BETA) to integrate MYC-
driven gene expression changes in murine VP with genome-wide
AR binding data0. This analysis revealed that AR binding was
significantly associated with genes downregulated by MYC
overexpression (P = 2.32e-5; Fig. 7a). Along this line, AR binding
was found to be increased at genomic regions nearby Andro-
gen_response genes alongside the H3K27ac mark following MYC
overexpression (Fig. 7b, c), in contrast with the accompanied
depletion of the Androgen_response gene set (Fig. 3c). For
example, AR and FOXA1 binding was increased in the promoter
region of Pbsn (Fig. 7d), an AR-dependent gene whose transcript
level was severely downregulated following MYC overexpression
(Fig. 7e; Supplementary Fig. 4b). In the promoter region of Msmb,
another AR-dependent gene previously characterized as a tumor
suppressor4!, AR and FOXA1 binding as well as the H3K27ac
mark levels were maintained although Msmb transcript levels
were also downregulated by MYC overexpression (Fig. 7f, g and
Supplementary Fig. 4b). These results suggest that MYC-driven
repression of the AR transcriptional program is not associated
with a disengagement of AR or the loss of the H3K27ac mark.
Using the androgen responsive LNCaP prostate cancer cell line,
Barfeld and colleagues have previously reported that MYC
overexpression antagonizes the transcriptional activity of the
AR5, Similarly to the MYC-driven genetically engineered
prostate cancer mouse model, MYC overexpression in LNCaP
cells was associated with the depletion of the Hallmark
Androgen_response gene set (Supplementary Fig. 9a). Annota-
tion of the AR cistrome and gene expression data by BETA
revealed that AR binding is associated with downregulated genes,
supporting a global reduction in AR transcriptional activity

driven by MYC overexpression. Conversely, MYC cistrome was
predominantly associated with upregulated genes, consistent with
its role as a transcriptional activator (Supplementary Fig. 9b).
Again, AR binding nearby Androgen_response genes remained
largely unchanged following MYC overexpression. Interestingly,
MYC binding nearby MYC_targets_V1 genes also remained
unchanged following MYC overexpression despite a significant
enrichment of the MYC_targets_V1 gene set (Supplementary
Fig. 9¢). Inspection of AR and MYC binding in the vicinity of
canonical AR-dependent genes such as KLK3 and TMPRSS2 also
revealed unchanged binding profiles (Supplementary Fig. 9d).

Based on the evidence for MYC regulation of RNA Pol II pause
release??, we leveraged RNA Pol II ChIP-seq to determine
genome-wide RNA Pol II traveling ratio (i.e. RNA Pol II density
in the promoter-proximal region over the RNA Pol II density in
the transcribed region) in vivo following MYC overexpression in
murine VP (Fig. 7h). As expected, genes with reduced RNA Pol II
traveling ratio following MYC overexpression were enriched for
MYC transcriptional signatures, indicative of pause release at these
sites (Fig. 71, j and Supplementary Fig. 10a). Critically, genes with
greater RNA Pol II traveling ratio were enriched for the AR
transcriptional signature, suggestive of enhanced RNA Pol II
pausing at AR-regulated genes (Fig. 7k, 1 and Supplementary
Fig. 10a). Along this line, ChIP-seq revealed a build-up of RNA
Pol II occupancy at the promoter of the AR-regulated gene Pbsn
following MYC overexpression (Fig. 7m). At the Msmb locus,
another AR-regulated gene, RNA Pol II occupancy remained
unchanged at the promoter region but was abrogated at the gene
body in the MYC overexpressing condition (Fig. 7n). These
features are in stark contrast to MYC-regulated genes such as Rps3
and Rps5 for which we observed an increase RNA Pol II
occupancy at the gene body in the MYC overexpressing condition
(Supplementary Fig. 10b, c). Since these patterns suggest a MYC-
driven altered ratio of initiating and elongating RNA Pol II at AR-
regulated genes, we next determined the RNA Pol II traveling ratio
at Androgen_response genes. Strikingly, RNA Pol II traveling ratio
at Androgen_response genes was significantly increased by MYC
overexpression (P =0.0021; Fig. 8a and Supplementary Fig. 10d),
supporting MYC-driven RNA Pol II promoter-proximal pausing
and consequently non-productive transcription at AR-dependent
genes. Altogether these findings support RNA Pol II promoter-
proximal pausing as a potential mechanism for MYC-mediated
transcriptional repression at AR regulated genes associated with
the canonical AR transcriptional signature (Fig. 8b)43.

Discussion

In this study, we report the impact of MYC overexpression
in vivo on the AR transcriptional program. By leveraging the
expression of a human MYC transgene (hgI9MYC) observed at a
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a BETA of AR peaks vs. MYC dysregulated genes
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single-cell level in murine prostatic tissues, our data demonstrate
that MYC overexpression robustly reprograms luminal (Krt8Hi,
Krt18Hi) cells toward a repressed AR transcriptional program, a
feature contrasting with the supporting role of MYC on the AR
transcriptional program in the apocrine breast cancer subtype?.
Our single-cell transcriptome data delineate a minor luminal sub-
population expressing high levels of Cd44, Tacstd2 (Trop2) and
Psca markers associated with luminal progenitor cells!8. Recently,
single-cell transcriptomics performed in the murine AP lobe also
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revealed a distinct but rare luminal subpopulation anatomically
lining the proximal duct and expressing Tacstd2 (Trop2), Psca as
well as Ly6a (Sca-1), Krt4 and Cldn10*. An independent study
suggested that the luminal subpopulation expressing high levels of
progenitor markers such as Tacstd2 (Trop2), Psca, Ly6a (Sca-1) and
Krt4 corresponds to urethral luminal cells extending into the
proximal ducts of the prostate¢. Since the luminal progenitor
population identified in the VP lobe expressed all the aforemen-
tioned markers (Supplementary Fig. 4a, f), we cannot rule out the
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Fig. 7 MYC overexpression disrupts the AR transcriptional program by pausing AR regulated genes. a BETA analysis revealed that AR binding sites are
associated with gene downregulation following MYC overexpression. b, ¢ Despite a dampened AR transcriptional program, higher levels of the AR binding
(b) and H3K27ac mark (c) are observed nearby AR response genes (VP; n = 2 pools of biological replicates (n = 8-13) per genotype). d, e AR, FOXA1 and
H3K27ac tracks at Pbsn locus, an AR-dependent gene, reveal unchanged or heightened AR and FOXAT binding (d VP; n=2 pools of biological replicates
(n=8-13) per genotype) albeit decreased transcript level (e VP; n=1 per genotype; edgeR: two-sided quasi-likelihood F-test) following MYC
overexpression. f, g Unchanged AR and FOXAT1 binding and H3K27ac mark at Mmsb locus (f VP; n= 2 pools of biological replicates (n=8-13) per
genotype), an AR-dependent gene downregulated by MYC overexpression (g VP; n =1 per genotype; edgeR: two-sided quasi-likelihood F-test). h RNA Pol Il
traveling ratio differences following MYC overexpression in murine VP (VP; n= 2 pools of biological replicates (n = 8-13) per genotype). i, j Pause release
genes following MYC overexpression are characterized by greater RNA Pol Il occupancy at gene body (i VP; n= 2 pools of biological replicates (n = 8-13)
per genotype) and are enriched for MYC transcriptional signatures (j GSEA, Hallmark, P<0.05 and FDR < 0.1; Source data are provided as a Source Data
file). k, | Pause genes following MYC overexpression are characterized by greater promoter-proximal RNA Pol Il occupancy (k VP; n =2 pools of biological
replicates (n = 8-13) per genotype) and are enriched for AR transcriptional signature (I GSEA, Hallmark, P < 0.05 and FDR < 0.1; Source data are provided as
a Source Data file). m, n Increased RNA Pol Il occupancy at the promoter of Pbsn (m) and decreased occupancy at the gene body of Msmb (n) following
MYC overexpression (VP; n=2 pools of biological replicates (n =8-13) per genotype). TSS: transcription start site; TES: transcription end site.
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Fig. 8 MYC disrupts transcriptional pause release at androgen receptor targets. a RNA Pol |l traveling ratio reveals greater promoter-proximal pausing at
Androgen_response genes (two-tailed t-test). b Graphical summary. TSS: transcription start site; TES: transcription end site; BCR: biochemical recurrence;
CRPC: castration resistant prostate cancer; FHRE: forkhead response elements; ARE: androgen response elements.

possibility that they might be of urethral origin. Regardless, these
progenitor cells were not transcriptionally reprogramed following
MYC overexpression (Fig. 3a).

In analyzing the expression of hgI9MYC transcript driven by
the ARR,Pb promoter we found it was not detected in WT
prostates, as expected. Surprisingly, we detected low, but con-
sistent hgl9MYC expression in non-luminal subpopulations
(basal: 17/93 (18.3%); hematopoietic: 3/35 (8.6%); vascular
endothelium: 1/8 (12.5%); Fig. 2c). While the ARR,Pb promoter
used to drive hgl9MYC expression has been described as
highly specific for prostatic epithelium!42%47, our single-cell

transcriptome highlights a potentially underappreciated leaky
expression of ARR,Pb-driven transgene. However, these see-
mingly stochastic events are likely transient since Hi-MYC mice
do not develop other MYC-driven malignancies, such as B-cell
leukemia/lymphoma8. With the increasing availability of single-
cell transcriptomic profiles from various genetically engineered
mouse models (GEMMs), it is expected that tissue specific pro-
moter specificity will be reassessed through a new lens.

MYC is commonly amplified in primary prostate cancer and is
overexpressed in 37% of metastatic disease”*’. Considering that
prostate cancer cells that develop resistance to AR-targeted
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therapy usually maintain AR expression®%°!, the interplay
between MYC and AR is likely to remain critical as the disease
progress to the CRPC stage. Importantly, our analyses exposed a
subtype of primary prostate cancer characterized by divergent AR
(low) and MYC (high) transcriptional signatures that are pre-
disposed to fail standard-of-care therapies and progress to the
mCRPC stage (Fig. 5). Arriaga and colleagues have recently
reported a MYC and RAS co-activation signature associated with
metastatic progression and failure to anti-androgen treatments®2.
It is thus tempting to speculate that MYC decreases the reliance of
prostate cancer cells on the canonical AR transcriptional pro-
gram, therefore facilitating resistance to AR-targeted therapies.
Along this line, we found that patients harboring a mCRPC
characterized by divergent AR (low) and MYC (high) transcrip-
tional signatures are more likely to fail first-line next generation
ARSI treatment (i.e. abiraterone acetate or enzalutamide) and die
of their disease. In support of c-MYC mediating resistance to
ARSI treatment, Bai et al. recently showed that a c-Myc inhibitor
disrupting c-Myc and Max dimerization sensitizes enzalutamide-
resistant prostate cancer cells to growth inhibition by
enzalutamide3. Considering that transition from CRPC to neu-
roendocrine prostate cancer (NEPC) is driven by N-Myc, which
also abrogates AR transcriptional program, and that N-Myc is
functionally complementary to c-Myc in various processes®, it
is now evident that Myc family members are key to prostate
cancer etiology and resistance to standard-of-care therapies.
These results support the use of therapies not centered on the
inhibition of AR signaling (e.g. PARP inhibitors, [177Lu]Lu-
PSMA-617) for the subgroup of patients harboring concurrent
AR_low/MYC_high transcriptional programs.

Intriguingly, although MYC overexpression antagonizes the
AR transcriptional program, this was not associated with a
diminished but rather an expanded AR cistrome, characterized by
FOXAL1 co-occupancy and an active chromatin state. Data from
our MYC-driven prostate cancer mouse model, together with a
previously published LNCaP model engineered to overexpress
MYC, revealed that MYC-driven repression of the AR tran-
scriptional program is not associated with a disengagement of AR
or the loss of the H3K27ac mark. Rather, we observed greater
RNA Pol II promoter-proximal pausing and non-productive
transcription at AR-dependent genes repressed by MYC in vivo.
Importantly, no evidence of direct interaction between MYC and
AR has been found!>%3, suggesting that the suppression of the AR
transcriptional program is not guided by a physical interaction
with MYC but rather by a MYC-induced RNA Pol II pausing
overcoming the AR enhancers driving AR-regulated genes. Taken
together, these results support cofactor redistribution driven by
increased MYC expression and resulting in greater RNA Pol II
promoter-proximal pausing as a potential mechanism for MYC-
mediated transcriptional repression at genes regulated specifically
by the AR (Fig. 8b)43->6,

Altogether, our study revealed an intricate crosstalk between
the AR, MYC, FOXA1 and RNA Pol II resulting in a corrupted
AR transcriptional program and promoting prostate cancer
initiation and progression to the mCRPC stage. Considering that
a simple dietary intervention meant to reduce saturated fat con-
sumption can dampen MYC transcriptional program, and the
recent development of viable MYC inhibitors for therapeutic
interventions!”>7, we foresee that targeting MYC may help
restore a canonical AR transcriptional program and sensitize
prostate cancer to AR-targeted therapies.

Methods

Animal husbandry. FVB Hi-MYC mice (strain number 01XK8), expressing the
human ¢-MYC transgene in prostatic epithelium, were obtained from the National
Cancer Institute Mouse Repository at Frederick National Laboratory for Cancer

Research!4. Upon weaning (3 weeks), male mice heterozygous for the transgene
(MYC), together with their wild type littermates (WT), were fed a purified diet
(TD.130838, Envigo). Animals were kept on a 12-hour light / 12-hour dark cycle,
and allowed free access to food and water at the Dana-Farber Cancer Institute
(DFCI) Animal Resources Facility (housing ambient temperature: 22 °C +2 °C;
ambient humidity: 30-70%). The animal protocol was reviewed and approved by
the DFCI Institutional Care and Use Committee (IACUC), and was in accordance
with the Animal Welfare Act. For protein expression experiments, mice were
housed in the Animal Resources Facility at the Research Institute of the McGill
University Health Centre (RI-MUHC) where they were fed a regular lab chow
(T.2918, Envigo) from the time of weaning (housing ambient temperature:

21°C 1 °C; ambient humidity: 40-60% + 5%). The animal protocol followed the
ethical guidelines of the Canadian Council on Animal Care, and was approved by
the RI-MUHC Glen Facility Animal Care Committee (FACC). Tumor burden in
male MYC mice is not associated with adverse effects before the experimental end
point (i.e. 12 weeks of age)!4.

Genotyping. Tail snips were sent to Transnetyx (Transnetyx, Inc.) for genotyping or
genomic DNA was extracted from ear punches using 0.4 mL of lysis buffer

(100 mM Tris-HCI pH 7.5, EDTA 5 mM, 2% SDS, 200 mM NaCl and 100 ug/uL
freshly added Proteinase K). Samples were incubated overnight at 52 °C. After
centrifugation at 10,000 x g for 20 min, the supernatant was collected and mixed by
inversion with 0.4 mL isopropanol to precipitate the DNA, which was pelleted by
centrifugation for 5 min, then washed with 0.5 mL 70% ethanol and dissolved in
10 uL molecular grade water. The presence of the MYC transgene was detected by
polymerase chain reaction (PCR), using the following primer combination: primer
1: 5 AAA CAT GAT GAC TAC CAA GCT TGG C 3’ and primer 2: 5 ATG ATA
GCA TCT TGT TCT TAG TCT TTT TCT TAA TAG GG 3. PCR products were
resolved using a 2% agarose tris-acetate-EDTA gel and a 177 bp band was visua-
lized using the ChemiDoc™ imaging system (Bio-Rad).

Tissue specimens

FVB Hi-MYC model. At 12 weeks of age, male mice were euthanized by CO, /
isoflurane followed by cervical dislocation. Mouse prostate lobes (AP, DLP, VP)
were dissected, weighed and immediately processed for bulk and single-cell tran-
scriptomics or flash-frozen in liquid nitrogen for chromatin immunoprecipitation
or protein expression experiments. Tissues were consistently collected during the
same periods to minimize inter-samples and circadian rhythm variability.

mCRPC LuCaP PDXs. Informed consent was obtained to collect human mCRPC
tissues and generate the patient-derived xenograft tumors as described previously
(male CB17 SCID mice between 4-6 weeks of age; maximum tumor size:

1000 mm?; housing ambient temperature: 20-26 °C; ambient humidity:
30-70%)37-38. The study was approved by the University of Washington Human
Subjects Division institutional review board (no. 2341). All animal studies were
approved by University of Washington IACUC and performed according to NIH
guidelines. Molecular characterization of AR* mCRPC LuCaP PDXs 70CR, 78CR,
81CR, 96CR, 105CR, 136CR and 147CR was previously described>”-33. LuCaP PDX
167CR was established from a liver metastasis of a male who died of abiraterone-,
carboplatin- and docetaxel-resistant CRPC. LuCaP 167CR expresses AR (mouse
monoclonal [F39.4.1] anti-AR; #MU256-UC, Biogenex; dilution 1:60), responds to
castration and is negative for synaptophysin (mouse monoclonal [D-4] anti-
synaptophysin; #sc-17750, Santa Cruz Biotechnology; dilution 1:200). PDX cellular
morphology recapitulates the original liver metastasis (Supplementary Fig. 8a;
characterization as previously described3?).

Bulk RNA-sequencing

FVB Hi-MYC model. Fresh prostate lobes from 12-week-old mice were dissociated
to form a single cell suspension. Prostate lobes were minced with a sterile razor
blade and resuspended in collagenase/hyaluronidase (#07912, Stemcell Technolo-
gies) diluted in DMEM/F-12 (#36254, Stemcell Technologies) at 37 °C for 2 h. After
dissociation, cells were centrifuged (350 x g for 5 min) and resuspended in 5 mL of
prewarmed 0.25% trypsin/EDTA (#07901, Stemcell Technologies) at 37 °C for

5 min. Trypsinization was stopped with 10 mL of cold HBSS (#37150, Stemcell)
supplemented with 2% of regular cell culture grade FBS. Cells were centrifuged
(350 x g for 5min) and resuspended in 1 mL of prewarmed dispase (#¥07913,
Stemcell Technologies) and 100 pL of DNase I (#07900, Stemcell Technologies) and
passed 5 times through a 27 G syringe needle. Cells were then mixed with 10 mL of
cold HBSS supplemented with 2% FBS, filtered through a 40 um cell strainer
(#27305, Stemcell Technologies), centrifuged (350 x g for 10 min) and resuspended
in PBS. An aliquot of the single cell suspension was immediately processed for
single-cell RNA-sequencing and RNA from an equal number of cells was extracted
using the miRNeasy Micro Kit (#217084, Qiagen) coupled with on-column DNAse
treatment (#79254, Qiagen) for bulk RNA-sequencing. RNA sample concentration
was measured and subjected to quality evaluation, using a Bioanalyzer RNA 6000
Nano kit (#5067-1511, Agilent). The Dana-Farber Cancer Institute Molecular
Biology Core Facilities prepared libraries from 500 ng of purified total RNA, using
TruSeq Stranded mRNA sample preparation kits (#RS-122-2101, Illumina)
according to the manufacturer’s protocol. Finished libraries were quantified by the
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Qubit dsDNA High-Sensitivity Assay Kit (#32854, Thermo Fisher Scientific), by an
Agilent TapeStation 2200 system using D1000 ScreenTape (#5067-5582, Agilent),
and by RT-qPCR using the KAPA library quantification kit (#KK4835, Kapa
Biosystems), according to the manufacturers’ protocols; pooled uniquely indexed
RNA-seq libraries in equimolar ratios were sequenced to a target depth of 40 M
reads on an Illumina NextSeq500 run with single-end 75 bp reads. Read alignment,
quality control and data analysis was performed using VIPER (2.0)%%, RNA-seq
reads were mapped by STAR (2.7.0f)>° and read counts for each gene were gen-
erated by Cufflinks (2.2.1)%0. Differential gene expression analyses were performed
on absolute gene counts for RNA-seq data and raw read counts for transcriptomic
profiling data using DESeq2 (1.18.1)°1.

mCRPC LuCaP PDXs. LuCaP PDX tumor samples were collected from castrated
CB 17 SCID male mice. Frozen tumors were used for RNA extraction and RNA-
seq analysis as described previously>’.

LNCaP MYC model. Published gene expression data (GSE73995!%) was down-
loaded and reanalyzed.

Single-cell RNA-sequencing. Cell preparation for 3’ barcoded scRNA-seq
(#120237, Chromium V2 assay) was performed according to the manufacturer’s
protocol (10X Genomics) targeting 5000 cells from single-cell suspensions of
freshly processed prostate lobes as described above. Single-cell RNA-seq data were
preprocessed using the 10x genomics Cell Ranger (https://www.10xgenomics.com;
2.0.0) to obtain the UMI (unique molecular identifier) counts for each gene. To get
a reliable single cell transcriptome dataset, we excluded the cells with fewer than
200 genes expressed (UMI > 0) or the cells with more than 80% UMIs from
mitochondrial genes. The filtered data was then normalized and scaled by using
seurat R package (3.1.1) to remove unwanted sources of variations®2. tSNE was
performed on the normalized data to visualize the single cells in two-dimensional
space by using the result of principal component analysis (PCA). Unsupervised
clustering was performed by using the “FindClusters” function in the seurat R
package (3.1.1) with parameters of resolution = 0.8. Genes with differential
expression between clusters were obtained by using Wilcoxon rank-sum test. FDR
was calculated to correct for multiple testing.

Specific gene expression levels. The normalized expression level for all cells was
calculated by the seurat R package (3.1.1). The Violin plots were created by the
geom_violin function in ggplot2 R package (3.3.2), scale option set to ‘area’.

Covariance analysis. The covariance for all genes with Ar is calculated by the cov
function in stats R package (3.6.0). Genes that have covariance difference larger
than 30 between the WT and MYC samples were colored in red and labeled in
the plot.

Slingshot pseudotime inference. Pseudotime inference is done by the slingshot R
package (1.3.1). K-means clustering results and tSNE coordinates were used as
input for the pseudotime inference.

Bioinformatics analyses - bulk RNA-seq and scRNA-seq

Bulk RNA-seq and scRNA-seq gene expression correlation. X-axis is the log(scRNA-
seq sum of UMI from all cells), Y-axis is log(bulk RNA-seq — raw read counts).
Correlation is calculated based on Pearson correlation. The Venn diagram is the
overlap expressed genes between scRNA-seq and bulk RNA-seq. A gene is con-
sidered as expressed when the sum of UMI from all cells is larger than 0 in scRNA-
seq or raw read counts is larger than 0 in bulk-RNA-seq.

Sample-sample correlation and principal component analysis (PCA). Sum of UMI
from all cells in scRNA-seq and raw read counts in bulk RNA-seq for matched
samples were calculated. Batch effects between scRNA-seq and bulk RNA-seq data
were removed using the ComBat approach from SVA (3.18.00). Pearson correla-
tion and principal components were calculated using the counts after removal of
batch effect.

Gene set enrichment analysis (GSEA). All GSEA were done using pre-ranked
analysis (GSEA Java; v4.1.0) with Hallmark gene sets (h.all.v7.2.symbols.gmt).
Heatmap visualization of normalized enrichment score (NES) was obtained using
ComplexHeatmap R package (2.2.0)%3.

Protein expression. Fresh-frozen VP tissues from 12-week-old male FVB mice
were sliced on ice with stainless steel disposable scalpels (Fisher Scientific) then
homogenized in RIPA buffer (20 mM Tris-HCI pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1% TRITON-X) supplemented with phosphatases and protease inhibitors
(Mini, Pierce™, Thermo Fisher) using a tissue grinder kit (Kontes). Equal amounts
of protein (15 pg; Pierce™ Rapid Gold BCA Protein Assay, Thermo Fisher) were
resolved on 8-12% Tris-glycine SDS-polyacrylamide gels and transferred to
nitrocellulose blotting membranes (Bio-Rad), following standard procedures.

Membranes were probed with the following antibodies according to the manu-
facturer’s instructions: rabbit monoclonal [Y69] anti-c-MYC (#ab32072, Abcam;
dilution 1:1,000), rabbit monoclonal [ER179(2)] anti-AR (#ab108341, Abcam;
dilution 1:1,000) or rabbit polyclonal anti-B-Actin (#4967, Cell Signaling Tech-
nology; dilution 1:1,000). Densitometry analyses were made with Image] (U.S.
NIH, Bethesda, MD; http://imagej.nih.gov/ij/). Results were normalized to B-actin
and expressed as arbitrary units.

ChlIP-sequencing

FVB Hi-MYC model. ChIP-sequencing was performed as described in Labbé and
Zadra et al.l”. Briefly, fresh-frozen VP tissues from 12-week-old mice were pul-
verized (Cryoprep Impactor, Covaris), resuspended in PBS + 1% formaldehyde,
and incubated at room temperature for 20 min. Fixation was stopped by the
addition of 0.125 M glycine (final concentration) for 15 min at room temperature,
then washed with ice cold PBS + EDTA-free protease inhibitor cocktail (PIC;
#04693132001, Roche). Multiple biological replicates were combined for each
condition in two distinct pools (replicates). Chromatin was isolated by the addition
of lysis buffer (0.1% SDS, 1% Triton X-100, 10 mM Tris-HCI (pH 7.4), 1 mM
EDTA (pH 8.0), 0.1% NaDOC, 0.13 M NaCl, 1X PIC) + sonication buffer (0.25%
sarkosyl, 1 mM DTT) to the samples, which were maintained on ice for 30 min.
Lysates were sonicated (E210 Focused-ultrasonicator, Covaris) and the DNA was
sheared to an average length of ~200-500 bp. Genomic DNA (input) was isolated
by treating sheared chromatin samples with RNase (30 min at 37 °C), proteinase K
(30 min at 55 °C), de-crosslinking buffer (1% SDS, 100 mM NaHCO3 (final con-
centration), 6-16 h at 65 °C), followed by purification (#28008, Qiagen). DNA was
quantified on a NanoDrop spectrophotometer, using the Quant-iT High-Sensitivity
dsDNA Assay Kit (#Q33120, Thermo Fisher Scientific). On ice, AR (2 ug,
#ab108341, Abcam), FOXALI (6 pg, #ab23738, Abcam), RNA Pol II (4 pg, #sc899,
Santa Cruz Biotechnology) or H3K27ac (10 ul, #ab4729, Abcam) antibodies were
conjugated to a mix of washed Dynabeads protein A and G (Thermo Fisher Sci-
entific), and incubated on a rotator (overnight at 4 °C) with 5 pg (AR, FOXAL,
RNA Pol II) or 1.5 ug (H3K27ac) of chromatin. ChIP’ed complexes were washed,
sequentially treated with RNase (30 min at 37 °C), proteinase K (30 min at 55 °C),
de-crosslinking buffer (1% SDS, 100 mM NaHCO3 (final concentration), 6-16 h at
65 °C), and purified (#¥28008, Qiagen). The concentration and size distribution of
the immunoprecipitated DNA was measured using the Bioanalyzer High Sensi-
tivity DNA kit (#5067-4626, Agilent). Dana-Farber Cancer Institute Molecular
Biology Core Facilities prepared libraries from 2 ng of DNA, using the ThruPLEX
DNA-seq kit (#R400427, Rubicon Genomics), according to the manufacturer’s
protocol; submitted the finished libraries to quality control analyses as described in
the bulk RNA-seq Methods section; ChIP-seq libraries were uniquely indexed in
equimolar ratios, and sequenced to a target depth of 40 M reads on an Illumina
NextSeq500 run, with single-end 75 bp reads.

mCRPC LuCaP PDXs. ChIP-sequencing for AR (N-20; 6 ug, #sc-816, Santa Cruz
Biotechnology), FOXA1 (4 ug, #ab23738, Abcam) and H3K27ac (1 pg,
#C15410196, Diagenode), was performed at the Dana-Farber Cancer Institute
using the protocol described previously3264,

LNCaP MYC model. Published ChIP-seq data (GSE73995!%) was downloaded and
reanalyzed.

Bioinformatics analyses—ChIP-seq

Peak calling and data analysis. All samples were processed through the compu-
tational pipeline developed at the Dana-Farber Cancer Institute Center for Func-
tional Cancer Epigenetics (CFCE) using primarily open source programs. Raw
Ilumina output was converted to FASTQ format using Illumina Bcl2fastq (2.18).
Sequence tags were aligned with Burrows-Wheeler Aligner (BWA; 0.7.17-r1188) to
build mm9 or hgl9 and uniquely mapped, non-redundant reads were retained®°.
These reads were used to generate binding sites with Model-Based Analysis of
ChIP-seq 2 (MACS; 2.1.1.20160309), with a g-value (FDR) threshold of 0.01%6. We
evaluated multiple quality control criteria based on alignment information and
peak quality: (i) sequence quality score; (ii) uniquely mappable reads (reads that
can only map to one location in the genome); (iii) uniquely mappable locations
(locations that can only be mapped by at least one read); (iv) peak overlap with
Velcro regions, a comprehensive set of locations - also called consensus signal
artifact regions - in the genome that have anomalous, unstructured high signal or
read counts in next-generation sequencing experiments independent of cell line
and of type of experiment; (v) number of total peaks (the minimum required was
1,000); (vi) high-confidence peaks (the number of peaks that are tenfold enriched
over background); (vii) percentage overlap with known DHS sites derived from the
ENCODE Project (the minimum required to meet the threshold was 80%); and
(viii) peak conservation (a measure of sequence similarity across species based on
the hypothesis that conserved sequences are more likely to be functional). Typi-
cally, if a sample fails one of these criteria, it will fail many (locations with low
mappability will likely have low peak numbers, many of which will likely be in
high-mappability regions, etc.).
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DNA binding motif analyses. Peaks from each group were used for motif
analysis by the motif search findMotifsGenome.pl in HOMER (3.0.0)7, with cutoff
g-value < le-10.

Sample-sample correlation and differential peaks analysis. Sample-sample correla-
tion and differential peaks analysis was performed by the CoBRA pipeline (2.0)%.
Peaks from all samples were merged to create a union set of sites for each tran-
scription factor and histone mark. Read densities were calculated for each peak for
each sample, which were used for comparison of cistromes across samples. Sample
similarity was determined by hierarchical clustering using the Spearman correla-
tion between samples. Tissue-specific peaks were identified by DESeq2 (1.18.1)
with adjusted P < 0.05. Total number of reads in each sample was applied to size
factor in DESeq2 (1.18.1), which can normalize the sequencing depth between
samples.

ChlIP-seq profiles. Given varying alignment of reads or fragments across samples,
coverage track bigwig files were calculated for each sample that reflected the
coverage signal and sequencing depth using the Chilin pipeline®. The deepTools
(2.3.5) package computeMatrix further computed the average score for each of the
samples. Finally, a profile heat map was created based on the scores at genomic
positions within 2 kb upstream and downstream of the AR binding sites. All
samples were ranked by the average score. ChIP-seq enrichment for transcription
factors and histone marks at the loci of selected genes were visualized and plotted
using karyoploteR R package (1.12.4)70.

RNA Pol II analysis. RNA Pol II traveling ratio (TR) scores for each gene was
calculated by comparing the ratio between RNA Pol II density in the promoter
region and in the gene body region?2. The promoter region was defined as —30 bp
to 4300 bp relative to the transcriptional start site (TSS) and the gene body as the
remaining length of the gene. We calculated the bins per million mapped reads
(BPM) use bamCoverage and computeMatrix in deepTools (2.3.5) for promoter
and gene body regions. The TR difference between WT and MYC were calculated
by TR value in WT minus TR value in MYC. Ranking plot of the WT - MYC TR
difference for all Pol II bound genes revealed a clear point in the distribution of
travel ratio difference where the difference began increasing/decreasing rapidly. To
geometrically define this point, we found the x-axis point for which a line with a
slope of 1 was tangent to the curve. We defined 246 genes above the increasing
point to be pause release genes and 556 genes below the decreasing point to be the
pause genes by MYC overexpression. DeepTools (2.3.5) function plotProfile and
plotHeatmap were used to create the Pol II occupancy (the region + 3 kb from the
start and end of the gene) summary profiles and heatmaps. Kolmogorov-Smirnov
test is applied to the TR distribution difference between WT and MYC for Hall-
mark Androgen_response genes.

Epigenomics and transcriptomics integration. All genes within the 100 kb of
gained AR binding sites in MYC samples were selected, k-means clustering of 3 was
applied. Cells were ordered by the pseudotime. GSEA analysis was done using the
gene sets deposited in the GSEA website (https://www.gsea-msigdb.org/gsea/
msigdb/annotate.jsp; 4.1.0). Binding and expression target analysis (BETA; 1.0.7)
was used to integrates ChIP-seq of transcription factors with differential gene

expression data and infer the dysregulated genes?0.

Prostate cancer clinical datasets analyses

The Cancer Genome Atlas (TCGA). RNA-seq readcount and clinical data from
488 samples with prostate cancer (PRAD) were downloaded from the Cancer
Genome Atlas (TCGA) database (https://cancergenome.nih.gov/) using Bio-
conductor package TCGAbiolinks (2.14.1)71. To calculate transcriptional signature
scores, RNA-seq data was normalized to sequencing depth and TPM transformed.
Hallmark Androgen_response and Hallmark MYC_targets_V1 gene sets were
downloaded from MSigDB”2. The AR-A signature comprising nine canonical AR
transcriptional targets (KLK3, KLK2, FKBP5, STEAP1, STEAP2, PPAP2A, RAB3B,
ACSL3, NKX3-1) was derived from previous published work3%. Transcriptional
signature scores were computed for every patient based on a non-parametric, rank-
based method implemented in singscore R package (1.6.0)73. TCGA patients were
assigned to the low or high group according to the cut-off point estimated by
maximally selected rank statistic maxstat R package (0.7-25) of each signature’4.
Survival analysis was conducted using survival R package (3.2-3)7°, Kaplan-Meier
were plotted using survminer R package (0.4.8)7¢ and log-rank test was used to
evaluate the overall statistical significance as well as the comparison between
groups. Benjamini-Hochberg was used to correct for multiple testing.

Validation cohort. The META855 cohort containing 855 patients treated with
radical prostatectomy with available transcriptomic, clinicopathological, and out-
comes data selected from five published studies of the Decipher prostate genomic
classifier test as previously described?. Microarray expression levels were nor-
malized using the SCAN algorithm (SCAN.UPC R package; 2.28.0)”7. The com-
bination of the Hallmark Androgen_response/Hallmark MYC_targets_V1 and AR-
A / Hallmark MYC_targets_V1 signatures and their association with BCR and
metastatic progression was examined in the META855 cohort using the thresholds

obtained from quantiles defined in the TCGA dataset. Patients were divided in four
groups and Kaplan-Meier analysis and log-rank test were conducted to evaluate
differences in biochemical recurrence and metastatic progression. The prognostic
association between the signatures and the clinicopathological factors was assessed
using Cox proportional hazard modeling.

Castration-resistant prostate cancer. Published gene expression data (GSE126078%7)
was downloaded and data analysis was performed using VIPER (2.0)%8.

Metastatic castration-resistant prostate cancer. The SU2C International Dream
Team cohort contains 429 mCRPC patients treated with a first-line ARSI (i.e.
abiraterone acetate or enzalutamide)?°. Patients underwent biopsy for the collection
of mCRPC tissue and a total of 75 patients had matching transcriptomic profiling
(RNA-seq) and outcomes data. Hallmark Androgen_response (missing gene
expression data for HERC3) and Hallmark MYC_targets_V1 (missing gene
expression data for PRPF31) transcriptional signature scores were computed for
every patient based on a non-parametric, rank-based method implemented in
singscore R package (1.6.0)73 using gene expression as TPM (transcripts per million
reads). Patients were assigned to the low or high group according to the cut-off
point estimated by maximally selected rank statistic maxstat R package (0.7-25) of
each signature’4. Survival analysis was conducted using survival R package (3.2-3)7,
Kaplan-Meier were plotted using survminer R package (0.4.8)7¢ and log-rank test
was used to evaluate the differences in overall survival. The prognostic association
between the signatures was assessed using Cox proportional hazard modeling.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The murine (bulk RNA-seq, scRNA-seq and ChIP-seq) and LuCaP PDXs (ChIP-seq)
sequencing data reported in this paper were deposited on NCBI Gene Expression
Omnibus (GEO) and are accessible through GEO Series accession number GSE163146
and GSE163220, respectively. The CRPC (bulk RNA-seq) and the LNCaP MYC model
(microarray and ChIP-seq) publicly available data used in this study are available
through GEO Series accession number GSE126078 and GSE73995, respectively. The
remaining data are available within the Article, Supplementary Information or Source
Data file provided with this paper.
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